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ABSTRACT

We introduce the new audio analysis task of pedestrian de-
tection and present a new large-scale dataset for this task.
While the preliminary results prove the viability of using au-
dio approaches for pedestrian detection, they also show that
this challenging task cannot be easily solved with standard
approaches.

Index Terms— pedestrian detection, audio classification,
dataset

1. INTRODUCTION

The intelligent analysis of urban soundscapes plays an increas-
ingly important role in the design of smart cities. Microphones
can complement or even replace other forms of sensors be-
cause (i) they are affordable, (ii) have low power requirements,
(iii) can cover large angles up to 360 degrees, and (iv) are not
negatively impacted by light conditions, weather patterns such
as fog, or obstacles blocking the angle of view.

In this paper, we propose a new challenging task in urban
sound analysis: the detection of pedestrians from audio-only
signals. The detection of pedestrians helps in alleviating bot-
tlenecks and in triggering advance warnings about potential
dislocations. Understanding the temporal and spatial variation
in demand for pedestrian infrastructure can also lead to better
resource use, more equitable service delivery, and greater sus-
tainability and resilience. Detecting pedestrians through audio
poses some unique challenges. The audio signal pedestrians
produce are often low volume and can be as diverse as steps
and speech. These signals have to be detected in a poly-timbral
and time-varying mixture of multiple urban sound sources with
overlapping frequency content.

To allow investigation of the viability of this novel task as
well as to enable and encourage future research on the task of
pedestrian detection through audio signals, we present a new,
large-scale dataset containing audio and video data recorded
in multiple separate recording sessions at different locations at
the Georgia Tech campus, Atlanta.1 The number of pedestrians
in proximity to the microphones is annotated through video
analysis with three different proximity radii.

This work was funded by NSF Award 2203408.
1urbanaudiosensing.github.io/ASPED, last access date Sep 6, 2023

The main contributions of this paper are (i) the introduction
of a new task in urban sound analysis: pedestrian detection,
(ii) the publication of a new large-scale audio dataset for this
task called ASPED (Audio Sensing for PEdestrian Detection),
and (iii) the presentation of baseline results for benchmarking
and for viability analysis.

2. RELATED WORK

Identifying the environmental context through Sound Event
Detection (SED) has been an active area of research in the
past decade [1, 2]. The challenge of SED in a typical outdoor
environment is the detection of an event from multiple known
and unknown sources of sound that are emitted simultaneously.
Initial approaches to SED have used Mel-frequency cepstral
coefficients (MFCC) or other time-frequency representations
such as Fourier transform and the wavelet transform [3, 4].
Other approaches included non-negative matrix transforma-
tions (NMF) and spectrogram analysis with image processing
techniques [5, 6, 7]. Recent advances in feedforward neu-
ral networks (FNN) and multilabel recurrent neural networks
(RNN) have been particularly promising for SED [8, 9, 3].

The advances in SED have led to a small but emerging field
focusing on the detection and classification of urban sounds
[1, 2]. This research has been instrumental in the automatic
detection of crime indicators such as screams and gunshots
and in monitoring urban noise pollution [10, 11, 12, 13]. A
recent large-scale research effort in this domain has been an
NSF-funded project called SONYC for detecting noise and
tagging urban sound sources [14]. This project has provided
a large dataset of audio recordings tagged by citizen science
volunteers who annotated the presence of 23 fine-grained cat-
egories of events. Another such dataset is AudioSet, which
was developed by the Machine Perception Research Organi-
zation at Google [15]. AudioSet is a large-scale collection of
human-labeled 10 s sound clips from over 2 million YouTube
videos and contain 527 classes of annotated sounds. The same
group at Google has also released the YouTube-100M data set
labeled with one or more topic identifiers from a set of 30,871
labels [16]. These labels are assigned automatically based on
the metadata and image content. A number of labeled data
sets for SED have also been developed from contributions to
freesound.org, including ESC-50 and FSD50K [17, 18]. In ad-
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Fig. 1: Research team installing audio recorders in the field.

dition, VGGSound is another audio-visual dataset released in
2020 containing more than 310 audio classes [19]. However,
previous research have not focused on sensing pedestrians
using SED techniques.

3. DATASET

3.1. Data acquisition

Two hardware setups were used for data acquisition. The audio
collection setup consisted of multiple Tascam DR-05X audio
recorders with power banks for extended duration recording,
Saramonic SR-XM1 microphones, and 5L OverBoard Wa-
terproof Dry Flat Bags for audio permeable weatherproofing.
The video setup is a GoPro HERO9 Black cameras with power
banks (housed in a Seahorse 56 OEM Micro Hard Case) for
extended duration recording.

Multiple audio sensors and cameras were deployed for
each data collection session. For each session, the recorders
were placed in their weatherproof bags once started, then
secured to their recording locations using zip ties. Recorders
were secured at approx. chest height as it was determined that
sub-meter variation in height did not affect audio quality.

The cameras were set to time-lapse mode with a 1 s dura-
tion. All Wi-Fi functionality was disabled to extend battery
life. Multiple cameras were utilized to keep all recorders in
view. The camera mounts were secured at approx. 2.5m using
zip ties.

In order to time sync the cameras the time as listed on
www.time.gov was shown on a mobile device to each camera
after starting recording. A fox 40 pearl whistle was then blown
and the precise time was recorded. This whistle was used to
sync the audio recorders. In deployment locations over larger
areas, multiple whistle blows were conducted.

Recorders were deployed at two on-campus locations, the
Cadell Courtyard, and the Tech Walkway. Both locations
are near areas with restaurants and cafes but are off-limits
to vehicular traffic. The battery life of the recording devices
limited the length of each recording session to approx. 2 days
per session.
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Fig. 2: Detected number of pedestrians at 6-meter radius by
hour of day.

In total, we captured 1-fps video recordings that sum up to
3,406,229 frames and the corresponding audio recordings of
nearly 2,600 hours. All but one recorded days are weekdays.

3.2. Annotations

The number of pedestrians that actually passed the audio
recorders was detected and annotated by applying the Masked-
attention Mask Transformer (Mask2Former) [20], with a
prediction threshold of 0.7 on video the recordings. This
study used a Mask2Former implementation by OpenMMLab,2

trained on Microsoft COCO [21].
For each video frame, bounding boxes of the detected

‘person’ class were first extracted from the prediction from
Mask2Former. Next, circular buffers of different radius r ∈
[1m, 3m, 6m, 9m] were overlaid on the video frames around
the poles to which audio recorders were attached. The buffers
were angled to match the perspective of each video recording
instance. Finally, the number of pedestrians with the bottom
center of the bounding box intersecting with recorder buffers
was counted and labeled in each frame.

Each frame has four sets of annotation data for the four
different recording radii (see Sect. 3.2). Among the annotated
videos, frames without any detected pedestrians were the most
common (around 92.8 %). Frames with one pedestrian were
next most frequent, followed by those with two, then three,
four pedestrians, and so on. The labeled data shows a lot
more pedestrians detected during the daytime. Pedestrian
activities were at peak around noon, especially during lunch
time (11AM–14PM, see Fig. 2).

4. EXPERIMENTS

4.1. Experimental setup

We determine a baseline level of performance for this task
with three different models, all targeting a binary classifica-

2openmmlab.com, last access date Sep 5, 2023

https://openmmlab.com


Fig. 3: Pedestrian detection video setup.

tion (pedestrians present/not present) at different microphone
radius settings and for different pedestrian count thresholds
separating the present/not present classes.

4.1.1. Model architectures

First, we investigate using the VGGish embeddings [16], pre-
trained on AudioSet [15], as input to a transformer encoder to
learn temporal relationships across each segment (referred to
as VGGISH). Second, we use a convolutional encoder with a
log-mel spectrogram input, followed by the aforementioned
transformer encoder (referred to as CONV). Third, we ex-
plore using the Audio Spectrogram Transformer, which has
been shown to deliver state-of-the-art performance for audio
scene classification tasks [22] (referred to as AST). All models
compute class output probabilities through an appended linear
classification layer with a sigmoid activation function.

4.1.2. Feature extraction

All network inputs are extracted in time frames of approx. 1 s
length. Both VGGISH and CONV follow the pre-processing
procedure for the pre-trained VGGish network [16], resulting
in a 128-dimensional VGGish embedding or a 96× 64 dimen-
sional (time × freq) log-mel spectrogram, respectively. The
AST input is a spectrogram with dimensionality 100 × 128
(time × freq), following the original publication [22].

The input of the VGGish and CONV models are a sequence
of 10 concurrent features, corresponding to each 1 s frame per
10 s audio segment. The input to the AST are single features
per 1 s frame. Each classification is done per frame, for every
second of audio.

4.1.3. Training procedure

As our data contains pedestrian counts per frame, we create
classification labels where values of 0 are counted as negative-
activity, and any value above 0 is counted as positive-activity.

The dataset was randomly split into train/test/validation
subsets with 80/10/10 proportion, respectively. For testing

and validation, any overlapping segments are removed so that
labels are not re-used multiple times.

The loss function for all models is binary cross-entropy. As
Fig. 2 shows, the label distribution is highly skewed towards
no-activity; To promote the learning of pedestrian activity,
we use the following augmentations for the underrepresented
classes: (i) weighted batch sampling — in each mini batch, au-
dio segments are sampled with replacement such that roughly
half will contain at least one pedestrian activity event; (ii) vari-
able weighted loss — each classes loss is weighted dynami-
cally per batch relative to its density in the training samples,
such that both positive and negative pedestrian-activity con-
tribute roughly equally to the loss per batch. The weighting
function used is shown below:

L = λLBCE+ + (1− λ)LBCE− (1)

λ =

{
1/num+

1/num++1/num− , if num+ ̸= 0

0, if num+ = 0
(2)

4.1.4. Hyperparameters and implementation

For CONV and VGGISH, we use 1 transformer encoder with
4 attention heads, with a hidden dimensionality of 128. CONV
contains 6 convolutional blocks each containing a conv2D,
batchnorm, and leakyReLU layer. Both networks are trained
with a learning rate of 0.0005. For the AST, we use the base
configuration per the authors implementation3 pre-trained on
ImageNet [23] and AudioSet [15] with hidden dimensionality
of 768, and a learning rate of 5e-7. We train the CONV and
VGGish models for 20 epochs and the AST for 10 epochs,
with the best performing model selected via performance on
the validation set. Parameters are optimized using the ADAM
optimizer [24]. We use a batch size of 2048 for VGGISH, 512
for CONV, and 32 for AST.

4.1.5. Experiments

We evaluate the baseline performance measured by class-level
and macro-average recall with the following experiments:

E1 — Comparison of baseline architectures: In order
to capture task performance using general audio classification
methods as well as to evaluate performance across architec-
tures of varying complexity, the three models introduced above
are compared. The complexity ranges from ∼ 100K trainable
parameters (VGGISH) to ∼ 80M trainable parameters (AST).

E2 — Impact of recording radius on accuracy: With
this experiment, the impact of the recording radius on the
performance is investigated. Spatial consideration for deter-
mining pedestrian activity affects both the count and diversity
of pedestrian noises: smaller radii contain a lower number
of pedestrians that should be easier to classify while larger
radii contain a higher number of pedestrians with harder to

3github.com/YuanGongND/ast, last access date Sep 5, 2023
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Fig. 4: Baseline results.

classify samples. As such, larger radii should provide a greater
diversity of pedestrian signals to our models with the downside
that counted pedestrians are more difficult to detect.

E3 — Impact of pedestrian count during training and
testing on performance: As the threshold for binary classifi-
cation can be set at arbitrary pedestrian counts, and does not
necessarily have to be identical for both training and testing.
Therefore, we determine the impact of different training thresh-
olds on different inference thresholds and thus investigate the
model generalizability to different pedestrian activity. This
experiment utilizes a CONV model at radius r = 6m while
thresholding labels with values pT ∈ [1,2,3,4] such that any
value lower than pT is set to 0. We then test each trained model
on the 4 resulting test sets.

4.2. Results

E1: Figures 4a and 4b detail the results using the VGGISH,
CONV, and AST models, respectively. We can make the fol-
lowing observations. First, the VGGISH model is in most cases
outperformed by both the CONV and AST models. Second,
in terms of macro accuracy, the performance of the VGGish
model is fairly constant across all radii, while the CONV and
AST models achieve highest performance on radii 3 and 6.
Third, the AST generally has closest parity between perfor-
mance on both classes. Lastly, the negative class recall seems
to generally slightly outperform the recall for the positive
(pedestrian) activity, although the dramatic class imbalance
observed in the data is not observed in the results showing
the effectiveness of the sampling and loss weighting applied
during training.

E2: When attempting to compare the performance across
different radii in Fig. 4a, it is important to note that the test
sets are not identical; although all audio content is identical,
the labels and, therefore, class-proportions differ. The per-
formance per class tends to be most balanced using radii 3m
and 6m. The performance for radius 1m likely suffers due

to pedestrian signals just outside the radius being labeled as
no-activity, while radius 9m likely suffers from the opposite
issue: low-volume pedestrian signals on the edge are labeled
as pedestrians while potentially not detectable from audio.

E3: Figure 4c visualizes the macro accuracy for each per-
mutation of combinations of train threshold and test threshold
for pedestrian count. We can make the following observations.
First, as the threshold for the test pedestrian count increases, a
greater proportion of the samples are classified correctly. It is
unsurprising that the classifier can perform better given the in-
creasing detecting the presumably easier to detect frames with
more pedestrians. Second, performance generally decreases
with increasing threshold for the training pedestrian count,
indicating that the classifier benefits from harder to classify
training samples. Third, a training pedestrian count threshold
of 4 is underperforming in all tests. Likely due to the low num-
ber of occurrences in the dataset. In general the performance
seems to be best when trained with a low pedestrian count
threshold and evaluated with a high pedestrian count threshold
(upper right triangle).

5. CONCLUSION

We have introduced the new large-scale dataset ASPED for the
challenging task of detecting pedestrians from audio data. The
dataset includes high quality audio recordings plus the video
recordings used for labeling the data with pedestrians counts.
The baseline results indicate the feasibility of using audio sen-
sors for pedestrian tracking, although the performance needs
to be improved before systems become practically usable.

Plans for future work include extending the dataset to loca-
tions with car traffic, investigating the accuracy of regression
approaches to predict exact pedestrian counts, and the devel-
opment of a more sophisticated classification approaches for
pedestrian detection.
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